

EFFICIENT ELECTRICITY AND HEAT GENERATION

Manufacturers and operators of CHPs have stringent requirements. Robust, compact engines have to work reliably 24 hours a day, 7 days per week. Economic operation over the life cycle of the entire plant is therefore essential. This requires a high level of efficiency by maximum utilisation of primary energy and low plant operating costs. With their continous development programme, MAN engines make a contribution to greater efficiency. Reliable and low in emissions.

CONTENTS

Efficient Electricity and
Heat Generation
Customer Benefits
MAN gas engines for
energy generation
How do naturally aspirated engines
differ from turbocharged engines?
Peace of mind from tailored service
E0834 and E0836
E2876 and E2676 1
E3268 and E3262
Exhaust Aftertreatment
Reconditioning of Engines 3

CUSTOMER BENEFITS

- High power and maximum efficiency
- Low operating costs as a result of low levels of lubricant and fuel consumption as well as extended service intervals (component stability)
- Low emissions due to state-of-the-art combustion technologies
- Low space requirement due to compact design
- Reliable in use thanks to field-tested technology
- Long service life resulting from application-specific design

MAN GAS ENGINES FOR ENERGY GENERATION

Application Type and Product Range

Mode of operation		COP with	natural gas	COP with special gas		
at engine speed	rpm (Hz)	1 500 (50)	1 800 (60)	1 500 (50)	1 800 (60)	
Туре	Cylinders		Power ((kW) ¹⁾		
E0834	4	37–68	45–68	80	80	
E0836	6	56–110	64–110	110	110	
E2876	6	150–220	170–210	130-220	130–200	
E2676	6	140–220	160–250	110–220	140–250	
E3268	8	320–370	340–390	320-370	390	
E3262	12	275–550	300–580	450-550	450–580	

¹⁾ in accordance with German Industrial Standard DIN ISO 3046, Part 1

Continuous power of unit (COP following DIN ISO 8528-1)

A unit's continuous power is the amount of power an electricity generator is able to produce over an unlimited number of operating hours per annum between the required maintenance intervals under the stated ambient conditions.

HOW DO NATURALLY ASPIRATED ENGINES DIFFER FROM TURBOCHARGED ENGINES?

Naturally aspirated engine

- Stoichiometric gas combustion (λ=1)
- Water-cooled exhaust pipes, without exhaust-gas turbocharging
- Ideally suited for exhaust gas aftertreatment with a three-way catalytic converter

Advantages: The low power density enables long maintenance intervals. Naturally aspirated engines have fewer components and are subject to less mechanical stress. They also offer higher operating reliability with the highest possible overall efficiency.

Turbocharged engine

- Lean gas combustion (λ>1)
- Exhaust-gas turbocharging complies with the inner-engine exhaust gas values from the TA Luft 2002 regulation for special gas
- For stricter emission regulations: exhaust gas aftertreatment with an oxidation catalytic converter and, if required, with SCR is available

Advantages: When fitted with a turbo charger the engine achieves a higher power density and operates economically and very efficiently.

PEACE OF MIND FROM TAILORED SERVICE

Low-pollutant and fitted with state-ofthe-art combustion technology, MAN natural-gas and special-gas engines pave the way to the future of cogeneration. Energy supply is an essential component for economic success. This is why of course you can always count on our corporation after the purchase should you need help.

MAN offers its partners and customers a tailored service concept. The packagers can perform the service entirely independently for their end customers. We customize our training courses to match your requirements by employing the in-depth and proven MAN expertise: Reliable and efficient – just like a MAN gas engine.

E0834 AND E0836

General data

Gas engine			E	0834	E0	836
Engine version			Е	LE	E	LE
TVDE	Cylinders			4	6	3
TYPE	ISO standard power 1)	kW	37	-80	56–110	
	Bore	mm	108 125		108	
=	Stroke	mm			125	
0	Displacement	1	4	1.6	6.9	
	Overall length	mm	862	1 055	1 090	1 300
H_kg) mm-→	Overall width	mm	742	809	740	740
	Overall height	mm	870	866	930	1 030
	Dry weight	- <u></u> kg	430	495	520	605

¹⁾ in accordance with German Industrial Standard DIN ISO 3046, Part 1

Technical features

Mode of operation	
at engine speed	rpm (Hz)
Engine version	
SO standard power ⁵⁾	kW
Air-fuel ratio	λ
Coolant heat 1)	kW
Exhaust heat based on 120 °C 1)	kW
Efficiency ¹⁾ - mechanical ⁵⁾ - thermal - total	%
Emissons status NO _X ²⁾	mg/Nm ³
Combustion 3)	

Technical data is based on a calorific fuel value of $10\,kWh/Nm^3$ for natural gas and $6\,kWh/Nm^3$ for special gas. The values are provided for information purposes only and are non-binding.

	COP with	special gas					
1 500 (50)				1 800 (60)			1800 (60)
 E 312	E 302	LE 312	E 312	E 302	LE 312 ⁴⁾	LE 322	LE 322 ⁴⁾
 37	54	68	45	62	68	80	80
 1.5	1.0	1.8	1.5	1.0	1.8	1.5	1.5
 29	46	54	31	51	52	61	63
 26	33	28	35	40	33	35	41
33.0	36.5	38.6	31.9	36.5	38.2	38.1	37.8
49.1	52.6	49.0	46.8	52.8	48.5	49.1	50.4
82.1	89.1	87.6	78.7	89.3	86.7	87.2	88.2
< 500	< 7 000	< 500 < 100 ^{4) 6)}	< 500	< 7 000	< 500 < 100 ⁴⁾⁶⁾	< 500	< 500
m	st	m	m	st	m	m	m

¹⁾ at 100 % load

²⁾ with 5 % exhaust-gas oxygen

³⁾ m = lean, st = stoichiometric

⁴⁾ data conditional and on request

⁵⁾ in accordance with German Industrial Standard DIN ISO 3046, Part 1

⁶⁾ emission status available on request, including SCR technology

Technical features

Mode of operation		
at engine speed	rpm (Hz)	
Engine version		
ISO standard power ⁵⁾	kW	
Air-fuel ratio	λ	
Coolant heat 1)	kW	
Exhaust heat based on 120 °C 1)	kW	
Efficiency ¹⁾ - mechanical ⁵⁾ - thermal - total	%	
Emissons status NO _X ²⁾	mg/Nm ³	

Technical data is based on a calorific fuel value of 10 kWh/Nm³ for natural gas and 6 kWh/Nm³ for special gas. The values are provided for information purposes only and are non-binding.

Combustion³⁾

 	COP with	special gas					
	1 500 (50)			1 800 (60)		1 500 (50)	1800 (60)
 E 312	E 302	LE 302	E 312	E 302	LE 302	LE 302	LE 302
 56	75	110	64	85	110	110	110
 1.50	1.00	1.65	1.50	1.00	1.68	1.49	1.45
41	63	82	58	70	89	77	93
37	46	50	48	55	51	55	54
34.4	36.7	39.6	33.3	36.4	38.0	39.4	37.4
47.9	53.3	49.6	55.2	53.6	52.1	49.3	52.0
82.3	90.1	89.2	88.5	90.0	90.1	88.7	89.4
< 500	< 7000	< 500 < 100 ⁴⁾⁶⁾	< 500	< 7000	< 500 < 100 ⁴⁾⁶⁾	< 500	< 500
m	st	m	m	st	m	m	m

¹⁾ at 100 % load

²⁾ with 5 % exhaust-gas oxygen

³⁾ m = lean, st = stoichiometric

⁴⁾ data conditional and on request

⁵⁾ in accordance with German Industrial Standard DIN ISO 3046, Part 1

⁶⁾ emission status available on request, including SCR technology


E2876 AND E2676

General data

Gas engine			E2876			E2676	
Engine version		E	LE	TE	E	LE	
TVDE	Cylinders			6			3
TYPE	ISO standard power 1)	kW	130–220			110–250	
	Bore	mm	128			126	
=	Stroke	mm	166			166	
0	Displacement			12.8		12.4	
	Overall length	mm	1 330	1 520	1 545	1 594	1 589
H_kg) ←mm→	Overall width	mm	830	830	835	936	808
	Overall height	mm	1 166	1 226	1 226	1 175	1 206
	Dry weight	kg	830	985–990	920	967	985

¹⁾ in accordance with German Industrial Standard DIN ISO 3046, Part 1

Technical features

Mode of operation

at engine speed rpm (Hz)

Engine version

ISO standard power ⁵⁾	kW
Air-fuel ratio	λ
Coolant heat 1)	kW
Exhaust heat based on 120 °C 1)	kW

Efficiency 1)

- mechanical 5)
- thermal
- total

Emissons status $NO_X^{(2)}$

mg/Nm³

%

Combustion³⁾

Technical data is based on a calorific fuel value of 10 kWh/Nm³ for natural gas and 6 kWh/Nm³ for special gas. The values are provided for information purposes only and are non-binding.

 	СОР	with natural		COP with s	special gas			
1 500 (50)			1 800 (60)		1 500 (50)		1 800 (60)	
 E 312	LE 212	LE 302	E 312 ⁴⁾	LE 302	TE 302	LE 202 ⁴⁾	TE 302	LE 302
150	220	210	170	210	130	220	130	200
 1.0	1.6	1.6	1.0	1.6	1.4	1.4	1.4	1.4
 128	120	99	145	106	124	103	132	106
 79	125	143	98	157	56	139	60	137
							- -	
38.4	40.4	39.0	38.0	37.0	38.2	40.4	36.6	38.5
52.8	49.4	48.9	54.1	50.7	52.9	49.6	54.0	50.8
91.2	89.8	88.0	92.1	87.8	91.1	90.0	90.6	89.2
< 4500	< 500 < 100 ⁴⁾⁶⁾	< 500 < 100 ⁴⁾⁶⁾	< 4 250	< 500	< 500	< 500	< 500	< 500
st	m	m	st	m	m	m	m	m

¹⁾ at 100 % load

²⁾ with 5 % exhaust-gas oxygen

³⁾ m = lean, st = stoichiometric

⁴⁾ data conditional and on request

⁵⁾ in accordance with German Industrial Standard DIN ISO 3046, Part 1

⁶⁾ emission status available on request, including SCR technology

Technical features

Mode of operation at engine speed rpm (Hz) Engine version

ISO standard power ⁵⁾	kW
Air-fuel ratio	λ
Coolant heat 1)	kW
Exhaust heat based on 120 °C 1)	kW

Effi	cienc	y 1)		

- mechanical 5)

- thermal

total

Emissons status NO_X ²⁾

mg/Nm³

Combustion 3)

Technical data is based on a calorific fuel value of 10 kWh/Nm³ for natural gas and 6 kWh/Nm³ for special gas. The values are provided for information purposes only and are non-binding.

 COP with natural gas						COP with special gas					
	1 500 (50)			1 800 (60)			1 500 (50)			1800 (60)	
 E 302	LE 202	LE 202	E 302	LE 202	LE 202	E 312	LE 212 ⁴⁾	LE 212	E 312	LE 212	
 140	220	220	160	250	250	110	220	220	140	250	
 1.00	1.73	1.73	1.00	1.74	1.72	1.00	1.57	1.62	1.00	1.61	
 107	113	110	122	124	113	92	109	108	113	121	
 86	121	121	104	156	148	75	131	113	108	137	
39.3	41.3	43.4	38.7	39.4	41.1	36.8	40.2	42.2	35.8	40.3	
54.2	47.8	46.8	54.7	49.1	46.4	55.9	49.1	44.1	56.5	46.4	
93.5	89.1	90.2	93.4	88.5	87.5	92.7	89.3	86.3	92.3	86.7	
< 5700	< 250	< 500 < 100 ^{4) 6)}	< 6500	< 250	< 500 < 100 ^{4) 6)}	< 500	< 250	< 500	< 500	< 500	
 st	m	m	st	m	m	st	m	m	st	m	

¹⁾ at 100 % load

²⁾ with 5 % exhaust-gas oxygen

³⁾ m = lean, st = stoichiometric

⁴⁾ data conditional and on request

⁵⁾ in accordance with German Industrial Standard DIN ISO 3046, Part 1

⁶⁾ emission status available on request, including SCR technology

E3268 AND E3262

General data

Gas engine			E3268	E3262		
Engine version	n		LE	E	LE	
TVDE	Cylinders		8	1	2	
TYPE	ISO standard power 1)	kW	320–390	275-	-580	
	Bore	mm	132	10	32	
	Stroke	mm	157	1:	57	
0	Displacement	ı	17.2	25.8		
	Overall length	mm	1 620	1 743	1 748	
H_kg) ←mm→	Overall width	mm	1 210	1 245	1 243	
	Overall height mm		1 422	1 494	1 500	
	Dry weight kg		1 497	1763 1849		

¹⁾ in accordance with German Industrial Standard DIN ISO 3046, Part 1

Technical features

Mode of operation at engine speed rpm (Hz) Engine version ISO standard power⁵⁾ kW Air-fuel ratio \(\lambda\) Coolant heat ¹⁾ kW Exhaust heat based on 120 °C 1) kW

Efficiency 1)

- mechanical 5)
- thermal
- total

Emissons status $NO_X^{(2)}$

mg/Nm³

%

Combustion 3)

Technical data is based on a calorific fuel value of 10 kWh/Nm³ for natural gas and 6 kWh/Nm³ for special gas. The values are provided for information purposes only and are non-binding.

 COP with natural gas					COP with special gas					
1 500 (50)			1800	1 800 (60)		1 500 (50)				
 LE 212	LE 242	LE 242	LE 212	LE 242	LE 222	LE 222	LE 232 ⁴⁾	LE 252 ⁴⁾	LE 262 4)	LE 222
 370	320	320	390	340	370	370	370	320	320	390
 1.63	1.70	1.70	1.66	1.70	1.62	1.63	1.47	1.54	1.52	1.59
175	174	160	203	175	192	176	193	173	163	201
215	204	181	222	206	225	202	222	194	177	236
41.6	39.2	41.7	40.8	40.3	39.4	41.7	40.3	40.5	41.9	40.1
47.9	50.0	47.5	47.9	48.2	49.7	46.9	49.2	49.5	47.6	49.0
89.5	89.2	89.2	88.7	88.5	89.1	88.6	89.5	90.0	89.5	89.1
< 500 < 100 ⁴⁾⁶⁾	< 250	< 500	< 500 < 100 ⁴⁾⁶⁾	< 500	< 250	< 500	< 500	< 500	< 500	< 500
m	m	m	m	m	m	m	m	m	m	m

¹⁾ at 100 % load

²⁾ with 5 % exhaust-gas oxygen

³⁾ m = lean, st = stoichiometric

⁴⁾ data conditional and on request

⁵⁾ in accordance with German Industrial Standard DIN ISO 3046, Part 1

⁶⁾ emission status available on request, including SCR technology

Technical features

at engine speed rpm (Hz) Engine version

ISO standard power ⁵⁾	kW
Air-fuel ratio	λ
Coolant heat 1)	kW
Exhaust heat based on 120 °C 1)	kW

Efficiency 1)

- mechanical 5)
- thermal
- total

Emissons status $NO_X^{(2)}$

mg/Nm³

Combustion³⁾

Technical data is based on a calorific fuel value of 10 kWh/Nm³ for natural gas and 6 kWh/Nm³ for special gas. The values are provided for information purposes only and are non-binding.

COP with natural gas

	1 500	(50)	1 800 (60)			
 E 302	LE 202	LE 202	LE 232	E 302 ⁴⁾	LE 202	LE 232 ⁴⁾
 275	550	550	450	300	580	450
 1.00	1.68	1.68	1.64	1.00	1.70	1.62
218	358	336	233	239	392	252
157	329	312	257	187	339	272
39.6	40.3	41.7	41.3	38.7	40.0	39.6
54.0	50.2	48.3	48.9	54.9	49.9	50.4
93.6	90.5	90.0	90.2	93.6	89.9	90.0
< 7000	< 250	< 500 < 100 ⁴⁾⁶⁾	< 500 < 100 ⁴⁾⁶⁾	< 7 000	< 500 < 100 ⁴⁾⁶⁾	< 500 < 100 ⁴⁾⁶⁾
st	m	m	m	st	m	m

¹⁾ at 100 % load

²⁾ with 5 % exhaust-gas oxygen

³⁾ m = lean, st = stoichiometric

⁴⁾ data conditional and on request

⁵⁾ in accordance with German Industrial Standard DIN ISO 3046, Part 1

⁶⁾ emission status available on request, including SCR technology

Technical features

Mode of operation

at engine speed	rpm (Hz

Engine version

ISO standard power ⁵⁾	kW
Air-fuel ratio	λ
Coolant heat 1)	kW
Exhaust heat based on 120 °C 1)	kW

Efficiency 1)

- mechanical 5)
- thermal
- total

Emissons status NO_X ²⁾

mg/Nm³

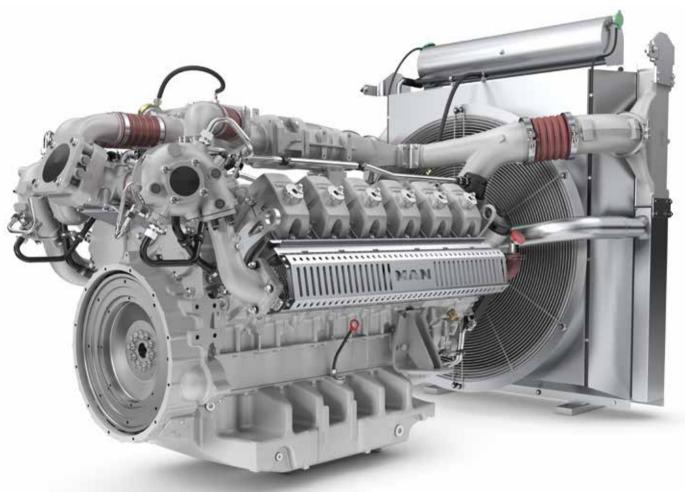
Combustion³⁾

Technical data is based on a calorific fuel value of 10 kWh/Nm³ for natural gas and 6 kWh/Nm³ for special gas. The values are provided for information purposes only and are non-binding.

COP with special gas

		1 500 (50)			1 800 (60)			
	LE 202	LE 212	LE 242	LE 202	LE 212	LE 242		
	550	550	450	580	580	450		
	1.45	1.57	1.54	1.42	1.55	1.50		
	283	263	233	327	299	262		
	312	281	249	352	315	279		
	40.6	41.7	41.1	39.2	40.0	38.6		
	49.0	46.0	47.8	51.8	47.8	50.4		
	89.6	87.7	88.9	91.0	87.8	89.0		
	< 500	< 500	< 500	< 500	< 500	< 500		
· ·	m	m	m	m	m	m		

¹⁾ at 100 % load


²⁾ with 5 % exhaust-gas oxygen

³⁾ m = lean, st = stoichiometric

⁴⁾ data conditional and on request

⁵⁾ in accordance with German Industrial Standard DIN ISO 3046, Part 1

⁶⁾ emission status available on request, including SCR technology

E3262 GENSET

Technical features

Mode of operation	 COP with natural gas			COP with special gas		
at engine speed	rpm (Hz)	 1 500 (50)	1 800 (60)	1 500 (50)	1 800 (60)	
Engine version		 LE 252 ⁴⁾	LE 252 ⁴⁾	LE 252 ⁴⁾	LE 252 ⁴⁾	
ISO standard power ⁵⁾	kW	 520	520	520	520	
Air-fuel ratio	λ	 1.61	1.63	1.44	1.44	
Coolant heat 1)	kW	 _		_		
Exhaust heat based on 120 °C 1)	kW	 289	298	291	329	
Efficiency 1) - mechanical 5) - thermal - total	%	 40.1 22.3 62.4	37.9 21.7 59.6	40.0 22.4 62.4	36.4 23.0 59.4	
Emissons status NO _X ²⁾	mg/Nm ³	 < 500	< 500	< 500	< 500	
Combustion 3)		 m	m	m	m	

Technical data is based on a calorific fuel value of 10 kWh/Nm³ for natural gas and 6 kWh/Nm³ for special gas. The values are provided for information purposes only and are non-binding.

¹⁾ at 100 % load

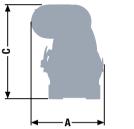
²⁾ with 5 % exhaust-gas oxygen 3) m = lean, st = stoichiometric

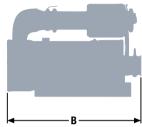
⁴⁾ data conditional and on request

⁵⁾ in accordance with German Industrial Standard DIN ISO 3046, Part 1

EXHAUST AFTERTREATMENT

The standardised SCR catalytic converter is available for the following MAN gas engines:


- E0834 LE302 and LE 322
- E0836 LE302
- E2876 LE202 and LE302
- E2676 LE202 and LE212
- E2842 LE322 and LE 332


The following engines require two SCR systems:

- E3268 LE212, LE222, LE232, LE242, LE252 and LE262
- E3262 LE202, LE212 and LE232

Dimensions

Type designation	SCR system	
A-Overall length	mm	555
B-Overall width	mm	977
C-Overall height	mm	665
Average weight of SCR system with exhaust silencer	kg	113

All data are reference values. Please request installation drawings for detailed specifications.

RECONDITIONING OF ENGINES AT THE MAN PLANT

You always meet twice: our engines are developed, designed, and manufactured at the International Centre of Excellence for Engines in Nuremberg, Germany – and that is also where they are reconditioned for a new lease of life. Therefore, you not only benefit from our engine experience and high level of technical expertise, you also get the same top MAN quality a second time around – and again with state-of-the-art technology. If that's not a positive déjà-vu experience!

The continual improvement of parts, as well as processing and assembly procedures, means that only state-of-the-art components are fitted in refurbished engines. As such, qualitative and design-related improvements are included with every instance of engine repair work at MAN.

Advantages of remanufacturing

- Original MAN parts
- New test run with test run protocol
- The latest technical series status for the materials and design
- Full plant warranty
- Same maintenance interval as for a new engine

MAN Truck & Bus SE

Vogelweiherstraße 33 90441 Nuremberg man-engines@man.eu www.man-engines.com

D 114.627/e · bs 09192 · Printed in Germany All data provided in this document is non-binding. This data serves informational purposes only and is especially not guaranteed in any way. Depending upon the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.